User Contributed Dictionary
Noun
Extensive Definition
In mathematics, an equivalence
relation is a binary
relation between two elements of a set which groups them together as
being "equivalent" in some way. Let a, b, and c be arbitrary
elements of some set X. Then "a ~ b" or "a ≡ b" denotes
that a is equivalent to b.
An equivalence relation "~" is reflexive,
symmetric, and
transitive. In other
words, the following must hold for "~" to be an equivalence
relation on X:
 Reflexivity: a ~ a
 Symmetry: if a ~ b then b ~ a
 Transitivity: if a ~ b and b ~ c then a ~ c.
The equivalence
class a under "~", denoted [a], is the subset of X whose
elements b are such that a~b. X together with "~" is called a
setoid.
Examples of equivalence relations
A ubiquitous equivalence relation is the equality
("=") relation between elements of any set. Other examples include:
 "Has the same birthday as" on the set of all people, given naive set theory.
 "Is similar to" or "congruent to" on the set of all triangles.
 "Is congruent to modulo n" on the integers.
 "Has the same image under a function" on the elements of the domain of the function.
 Logical equivalence of logical sentences.
 "Is isomorphic to" on models of a set of sentences.
 In some axiomatic
set theories other than the canonical ZFC (e.g., New
Foundations and related theories):
 Similarity on the universe of wellorderings gives rise to equivalence classes that are the ordinal numbers.
 Equinumerosity
on the universe of:
 Finite sets gives rise to equivalence classes which are the natural numbers.
 Infinite sets gives rise to equivalence classes which are the transfinite cardinal numbers.
 Let a, b, c, d be natural
numbers, and let (a, b) and (c, d) be ordered
pairs of such numbers. Then the equivalence
classes under the relation (a, b) ~ (c, d) are the:
 Integers if a + d = b + c;
 Positive rational numbers if ad = bc.
 Let (rn) and (sn) be any two Cauchy sequences of rational numbers. The real numbers are the equivalence classes of the relation (rn) ~ (sn), if the sequence (rn − sn) has limit 0.
 Green's relations are five equivalence relations on the elements of a semigroup.
 "Is parallel to" on the set of subspaces of an affine space.
Examples of relations that are not equivalences
 The relation "≥" between real numbers is reflexive and transitive, but not symmetric. For example, 7 ≥ 5 does not imply that 5 ≥ 7. It is, however, a partial order.
 The relation "has a common factor greater than 1 with" between natural numbers greater than 1, is reflexive and symmetric, but not transitive. (The natural numbers 2 and 6 have a common factor greater than 1, and 6 and 3 have a common factor greater than 1, but 2 and 3 do not have a common factor greater than 1).
 The empty relation R on a nonempty set X (i.e. aRb is never true) is vacuously symmetric and transitive, but not reflexive. (If X is also empty then R is reflexive.)
 The relation "is approximately equal to" between real numbers or other things, even if more precisely defined, is not an equivalence relation, because although reflexive and symmetric, it is not transitive, since multiple small changes can accumulate to become a big change.
 The relation "is a sibling of" on the set of all human beings is not an equivalence relation. Although siblinghood is symmetric (if A is a sibling of B, then B is a sibling of A) it is neither reflexive (no one is a sibling of himself), nor transitive (since if A is a sibling of B, then B is a sibling of A, but A is not a sibling of A). Instead of being transitive, siblinghood is "almost transitive", meaning that if A ~ B, and B ~ C, and A ≠ C, then A ~ C.
 The concept of parallelism in ordered geometry is not symmetric and is, therefore, not an equivalence relation.
 An equivalence relation on a set is never an equivalence relation on a proper superset of that set. For example R = is an equivalence relation on but not on or on the natural number. The problem is that reflexivity fails because (4,4) is not a member.
Connection to other relations
A congruence
relation is an equivalence relation whose domain X is also the
underlying set for an algebraic
structure, and which respects the additional structure. In
general, congruence relations play the role of kernels
of homomorphisms, and the quotient of a structure by a congruence
relation can be formed. In many important cases congruence
relations have an alternative representation as substructures of
the structure on which they are defined. E.g. the congruence
relations on groups correspond to the normal
subgroups.
Order and
equivalence relations are both transitive, but only
equivalence relations are symmetric as well. If symmetry is weakened to
antisymmetry, the result is a partial
order.
A
partial equivalence relation is transitive and symmetric, but
not reflexive.
 Transitive and symmetric imply reflexive iff for all a∈X exists b∈X such that a~b.
Equivalence relations can thus be seen as the
culmination of a hierarchy of order relations.
Equivalence class, quotient set, partition
Let X be a nonempty set with typical elements a and b. Some definitions: The set of all a and b for which a ~ b holds make up an equivalence class of X by ~. Let [a] =: denote the equivalence class to which a belongs. Then all elements of X equivalent to each other are also elements of the same equivalence class: ∀a, b ∈ X (a ~ b ↔ [a ] = [b ]).
 The set of all possible equivalence classes of X by ~, denoted X/~ =: , is the quotient set of X by ~. If X is a topological space, there is a natural way of transforming X/~ into a topological space; see quotient space for the details.
 The projection of ~ is the function π : X → X/~, defined by π(x) = [x ], mapping elements of X into their respective equivalence classes by ~.
 Theorem on projections (Birkhoff and Mac Lane 1999: 35, Th. 19): Let the function f: X → B be such that a ~ b → f(a) = f(b). Then there is a unique function g : X/~ → B, such that f = gπ. If f is a surjection and a ~ b ↔ f(a) = f(b), then g is a bijection.
 The equivalence kernel of a function f is the equivalence relation, denoted Ef, such that xEfy ↔ f(x) = f(y). The equivalence kernel of an injection is the identity relation.
 A partition of X is a set P of subsets of X, such that every element of X is an element of a single element of P. Each element of P is a cell of the partition. Moreover, the elements of P are pairwise disjoint and their union is X.
Theorem ("Fundamental Theorem of Equivalence
Relations": Wallace 1998: 31, Th. 8; Dummit and Foote 2004: 3,
Prop. 2):
 An equivalence relation ~ partitions X.
 Conversely, corresponding to any partition of X, there exists an equivalence relation ~ on X.
Counting possible partitions. Let X be a finite
set with n elements. Since every equivalence relation over X
corresponds to a partition of X, and vice versa, the number of
possible equivalence relations on X equals the number of distinct
partitions of X, which is the nth Bell number
Bn:
 B_n = \sum_^\infty \frac.
Generating equivalence relations
 Given any set X, there is an equivalence relation over the set of all possible functions X→X. Two such functions are deemed equivalent when their respective sets of fixpoints have the same cardinality, corresponding to cycles of length one in a permutation. Functions equivalent in this manner form an equivalence class on X2, and these equivalence classes partition X2.
 An equivalence relation ~ on X is the equivalence kernel of its surjective projection π : X → X/~. (Birkhoff and Mac Lane 1999: 33 Th. 18). Conversely, any surjection between sets determines a partition on its domain, the set of preimages of singletons in the codomain. Thus an equivalence relation over X, a partition of X, and a projection whose domain is X, are three equivalent ways of specifying the same thing.
 The intersection of any two equivalence relations over X (viewed as a subset of X × X) is also an equivalence relation. This yields a convenient way of generating an equivalence relation: given any binary relation R on X, the equivalence relation generated by R is the smallest equivalence relation containing R. Concretely, R generates the equivalence relation a ~ b iff there exist elements x1, x2, ..., xn in X such that a = x1, b = xn, and (xi,xi+ 1)∈R or (xi+1,xi)∈R, i = 1, ..., n1.
 Note that the equivalence relation generated in this manner can be trivial. For instance, the equivalence relation ~ generated by:

 The binary relation ≤ has exactly one equivalence class, X itself, because x ~ y for all x and y;
 An antisymmetric relation has equivalence classes that are the singletons of X.
 Let r be any sort of relation on X. Then r ∪ r−1 is a symmetric relation. The transitive closure s of r ∪ r−1 assures that s is transitive and reflexive. Moreover, s is the "smallest" equivalence relation containing r, and r/s partially orders X/s.
 Equivalence relations can construct new spaces by "gluing things together." Let X be the unit Cartesian square [0,1] × [0,1], and let ~ be the equivalence relation on X defined by ∀a, b ∈ [0,1] ((a, 0) ~ (a, 1) ∧ (0, b) ~ (1, b)). Then the quotient space X/~ can be naturally identified with a torus: take a square piece of paper, bend and glue together the upper and lower edge to form a cylinder, then bend the resulting cylinder so as to glue together its two open ends, resulting in a torus.
Algebraic structure
Modular lattices
The possible equivalence relations on any set X, when ordered by set inclusion, form a modular lattice, called Con X by convention. The canonical map ker: X∧X → Con X, relates the monoid X^X of all functions on X and Con X. ker is surjective but not injective. Less formally, the equivalence relation ker on X, takes each function f: X→X to its kernel ker f. Likewise, ker(ker) is an equivalence relation on X^X.Group theory
It is very well known that lattice theory captures the mathematical structure of order relations. It is less known that transformation groups (some authors prefer permutation groups) and their orbits shed light on the mathematical structure of equivalence relations. Just as order relations are grounded in ordered sets, sets closed under pairwise supremum and infimum, equivalence relations are grounded in partitioned sets, sets closed under bijections preserving partition structure. Since all such bijections map an equivalence class onto itself, such bijections are also known as permutations.Let '~' denote an equivalence relation over some
nonempty set A, called the universe
or underlying set. Let G denote the set of bijective functions over
A that preserve the partition structure of A: ∀x
∈ A ∀g ∈ G (g(x) ∈ [x]). Then
the following three connected theorems hold (Van Fraassen 1989:
§10.3):
 ~ partitions A into equivalence classes. (This is the Fundamental Theorem of Equivalence Relations, mentioned above);
 Given a partition of A, G is a transformation group under composition, whose orbits are the cells of the partition‡;
 Given a transformation group G over A, there exists an equivalence relation ~ over A, whose equivalence classes are the orbits of G. (Wallace 1998: 202, Th. 6; Dummit and Foote 2004: 114, Prop. 2).
This transformation group characterisation of
equivalence relations differs fundamentally from the way lattices
characterize order
relations. The arguments of the lattice theory operations
meet and join are elements of some universe
A. Meanwhile, the arguments of the transformation group operations
composition
and inverse
are elements of a set of bijections, A →
A.
Moving to groups in general, let H be a subgroup of some group
G. Let ~ be an equivalence relation on G, such that a ~ b
↔ (ab−1 ∈ H). The equivalence classes
of ~—also called the orbits of the action of H
on G—are the right cosets of H in G. Interchanging a
and b yields the left cosets.
For more on group theory and equivalence
relations, see Lucas (1973: §31).
‡Proof (adapted from Van Fraassen 1989: 246). Let
function
composition interpret group multiplication, and function
inverse interpret group inverse. Then G is a group under
composition, meaning that ∀x ∈ A ∀g
∈ G ([g(x)] = [x]), because G satisfies the following four
conditions:
 G is closed under composition. The composition of any two elements of G exists, because the domain and codomain of any element of G is A. Moreover, the composition of bijections is bijective (Wallace 1998: 22, Th. 6);
 Existence of identity element. The identity function, I(x)=x, is an obvious element of G;
 Existence of inverse function. Every bijective function g has an inverse g−1, such that gg−1 = I;
 Composition associates. f(gh) = (fg)h. This holds for all functions over all domains (Wallace 1998: 24, Th. 7).
Relation with category theory and with groupoids
The composition of morphisms central to category theory, denoted here by concatenation, generalizes the composition of functions central to transformation groups. The axioms of category theory assert that the composition of morphisms associates, and that the left and right identity morphisms exist for any morphism.A morphism f can be said to have an inverse when
f is an isomorphism,
i.e., there exists a morphism g such that fg and gf are the
approrpiate identity morphisms. Hence the categorytheoretic
concept nearest to an equivalence relation is a (small) category
whose morphisms are all isomorphisms. This is just the concept of
groupoid.
In a groupoid G, two objects x,y are 'equivalent'
if there is an element g of the groupoid from x to y. There may be
many such g, and they can be regarded as different `proofs' that x
is equivalent to y.
Regarding an equivalence relation as a special
case of a groupoid has many implications: one is that whereas we do
not have a notion of `free equivalence relation' we do have a
notion of free groupoid on a directed graph. Thus we can talk of a
`presentation of an equivalence relation', meaning a presentation
of the corresponding groupoid. The other advantage is that it views
bundles of groups, group actions, sets, and equivalence relations,
as special cases of the same notion, that of groupoid, and so
allows analogies between these theories and concepts.
This also applies in many other contexts where
`quotienting', and so the appropriate equivalence relations, often
called congruences
are important. This leads to the notion of internal groupoid in a
category. For this, see the book `Galois theories' cited
below.
Equivalence relations and mathematical logic
Equivalence relations are a ready source of examples or counterexamples. For example, an equivalence relation with exactly two infinite equivalence classes is an easy example of a theory which is ωcategorical, but not categorical for any larger cardinal number.An implication of model theory
is that the properties defining a relation can be proved
independent of each other (and hence necessary parts of the
definition) if and only if, for each property, examples can be
found of relations not satisfying the given property while
satisfying all the other properties. Hence the three defining
properties of equivalence relations can be proved mutually
independent by the following three examples:
 Reflexive and transitive: The relation ≤ on N. Or any preorder;
 Symmetric and transitive: The relation R on N, defined as aRb ↔ ab ≠ 0. Or any partial equivalence relation;
 Reflexive and symmetric: The relation R on Z, defined as aRb ↔ "a − b is divisible by at least one of 2 or 3." Or any dependency relation.
Properties definable in firstorder
logic that an equivalence relation may or may not possess
include:
 The number of equivalence classes is finite or infinite;
 The number of equivalence classes equals the (finite) natural number n;
 All equivalence classes have infinite cardinality;
 The number of elements in each equivalence class is the natural number n.
 Things which equal the same thing also equal one another.
Nowadays, the property described by Common Notion
1 is called Euclidean
(replacing "equal" by "are in relation with"). The following
theorem connects Euclidean
relations and equivalence relations:
Theorem. If a relation is Euclidean and reflexive, it is also
symmetric and transitive.
Proof:
 (aRc ∧ bRc) → aRb [a/c] = (aRa ∧ bRa) → aRb [reflexive; erase T∧] = bRa → aRb. Hence R is symmetric.
 (aRc ∧ bRc) → aRb [symmetry] = (aRc ∧ cRb) → aRb. Hence R is transitive. \square
See also
References
 Garrett Birkhoff and Saunders Mac Lane, 1999 (1967). Algebra, 3rd ed. Chelsea.
 Borceux, F. and Janelidze, G., 2001. Galois theories, Cambridge University Press, ISBN 0521803098.
 Brown, R., 2006. Topology and Groupoids, Booksurge LLC. ISBN 1419627228.
 Castellani, E., 2003, "Symmetry and equivalence" in Katherine Brading and E. Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press: 422433.
 Robert Dilworth and Crawley, Peter, 1973. Algebraic Theory of Lattices. Prentice Hall. Chpt. 12 discusses how equivalence relations arise in lattice theory.
 Dummit, D. S., and Foote, R. M., 2004. Abstract Algebra, 3rd ed. John Wiley & Sons.
 Higgins, P.J., 1971. Categories and groupoids, van Nostrand, downloadable as TAC Reprint, 2005.
 John Randolph Lucas, 1973. A Treatise on Time and Space. London: Methuen. Section 31.
 Rosen, Joseph, 1995. Symmetry in Science: An Introduction to the General Theory. SpringerVerlag.
 Bas van Fraassen, 1989. Laws and Symmetry. Oxford Univ. Press.
 Wallace, D. A. R., 1998. Groups, Rings and Fields. SpringerVerlag.
External links
 Bogomolny, A., "Equivalence Relationship" cuttheknot. Accessed 7 December 2007
equivalency in Catalan: Relació
d'equivalència
equivalency in Czech: Ekvivalence
(matematika)
equivalency in Danish: Ækvivalensrelation
equivalency in German: Äquivalenzrelation
equivalency in Spanish: Relación de
equivalencia
equivalency in French: Relation
d'équivalence
equivalency in Classical Chinese: 等價
equivalency in Korean: 동치 관계
equivalency in Italian: Relazione di
equivalenza
equivalency in Hebrew: יחס שקילות
equivalency in Hungarian:
Ekvivalenciareláció
equivalency in Dutch: Equivalentierelatie
equivalency in Japanese: 同値関係
equivalency in Occitan (post 1500): Relacion
d'equivaléncia
equivalency in Polish: Relacja
równoważności
equivalency in Portuguese: Relação de
equivalência
equivalency in Romanian: Relaţie de
echivalenţă
equivalency in Russian: Отношение
эквивалентности
equivalency in Slovak: Relácia
ekvivalencie
equivalency in Slovenian: Ekvivalenčna
relacija
equivalency in Serbian: Релација
еквиваленције
equivalency in Finnish:
Ekvivalenssirelaatio
equivalency in Swedish: Ekvivalensrelation
equivalency in Vietnamese: Tập hợp tương
đương
equivalency in Ukrainian: Відношення
еквівалентності
equivalency in Chinese: 等价关系